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CONTRACTIVITY-PRESERVING IMPLICIT 
LINEAR MULTISTEP METHODS 

H. W. J. LENFERINK 

ABSTRACT. We investigate contractivity properties of implicit linear multistep 
methods in the numerical solution of ordinary differential equations. The em- 
phasis is on nonlinear and linear systems d U(t) = f(t, U(t)), where f sat- 
isfies a so-called circle condition in an arbitrary norm. The results for the two 
types of systems turn out to be closely related. We construct optimal multi- 
step methods of given order and stepnumber, which allow the use of a maximal 
stepsize. 

1. INTRODUCTION 

In this paper we will study the contractivity of implicit linear multistep meth- 
ods in the numerical solution of ordinary differential equations. Consider the 
initial value problem 

(l. l a) d (t) = f(t, (0) (t > 0), 

(I. lb) U(0) = UO 

where u0 E K{S and the function f with values in yS are given (K stands 
consistently for 1R or C in this section) and s > 1. To approximate the 
solution to (1.-1), we want to use the linear multistep method 

Un- hkf(tn , Un) 

(1.2) k-I 

= E(-aiUn k+i + h/if(tn-k+i' Un-k+i)) (n > k). 
1=0 

The vector un is an approximation to U(nh) (n = 0, 1,...), h > 0 is 
the stepsize, k is the stepnumber, and u0, ..., Uk 1 E Ks are given initial 

approximations. Further, '>i (? < i < k- 1) and fli (0 < i < k) are 
coefficients in K specifying the method. The method is explicit if fik = 0, and 
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implicit if 3k $ 0. The order of the method is the largest integer p such that 

k-I 

(1.3) (1 - h/Jk) exp(kh) = j:(-ci + h3,i) exp(ih) + c&(hp+') (for h -O 0). 
1=o 

We assume (see, e.g., [20, p. 390] or [4, 8, 10, 11, 13, 14, 17, 18, 19]) that f 
satisfies, for some p > 0, the circle condition 

(1.4) 11f(t, x) - f(t, y) + p(x - Y)|| < p|lx - yll (for x, y Ez KS). 

Here, stands for an arbitrary norm in IEis. This circle condition implies 
(cf., e.g., [201) 

(1.5) 11 V(t2) - W(t2)I < 11 V(tl) - W(tl)II (for t2 > tl > 0), 

for any two solutions V and W of (l.la). 
In view of (1.5) it is natural to ask for a multistep method (1.2) which guar- 

antees a similar property for the numerical approximations un . Such a property 
is also favorable with respect to the propagation of errors. Therefore, we call 
the k-step method (1.2) contractive (cf. [4, 8, 11, 13, 17, 19]) for a function 
f, a stepsize h, and a norm if for any two sequences (vn)n>O, (Wn)n>O 

satisfying (1.2) we have 

(1.6) IIvn - 
Wn<II 

max 
IIVn-k+i 

- 
Wn-k+?i 

(n = k, k + 1, ) 

Two test equations will be considered. One of them is obtained by choosing 
for the function f 

(1.7) f(t, x) = Ax (t > 0, x E KS). 

Here, A is an s x s matrix with coefficients in K such that (1.4) holds for 
some p > 0. The contractivity of (1.2) when applied to this test problem is 
related to the choice of the stepsize h by Theorem 3.3 in [19]. In fact, (1.2) is 
contractive for all s > 1 , each matrix A, and each norm . on KS such that 
(1.4) is satisfied, if and only if 

(1.8) h<Rp . 

The factor R (O < R < oo), which in [8, 11, 13, 19] is called the threshold 
factor, is given by 

R = inf{-ac,fl 10 < i < k - 1 and /,i > 0} 
(1.9) if ?k?> O and ai <0, aiflk < ?fi (? < i < k- 1), 

R = 0 (otherwise). 

We define, for k .> 1 , p > 1, the optimal threshold factor Rk p by 

(1.10) Rk,p = sup{RIR is the threshold factor (1.9) 
of a k-step method (1.2) of order p}. 
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In the definitions of the threshold factors, we put, as usual, inf 0 = oo and 
sup 0 = -oo. A k-step method (1.2) of order p will be called optimal for 
(1.1), (1.7) if its threshold factor R equals Rk,p. 

One also arrives at a stepsize restriction which involves the threshold factor 
(1.9) if one aims at the conservation of positivity in the numerical solution of 
ordinary differential equations (see [1]). This factor (1.9) is necessarily finite 
when the order p is larger than one (cf. [1, 15, 19]). 

A threshold factor with a similar property as R given by (1.9) can be defined 
for methods that do not belong to the class of methods (1.2) (e.g., for explicit 
or implicit Runge-Kutta methods, cf. [19, p. 283]). For rather general one-step 
methods, the size of the corresponding optimal threshold factor was studied in 
[8, 1 1]. In [ 1 3], this was done for explicit linear multistep methods. One of the 
purposes of the present paper is to study the size of optimal threshold factors 
Rk p for linear multistep methods that are implicit. 

We arrive at another natural test equation if we choose 1K = C and 

(.1 1) f(t, x) = a(t)x (t>0, xEC) 

in (1.la). Here, a(-) is a function with values in C such that (1.4) holds for 
some p > 0. This scalar test equation was also dealt with in, e.g., [2, 17, 18]. 

Also when (1.2) is applied to the second test equation, i.e., (1. 1), (1.1 1), the 
contractivity is related to the choice of the stepsize h. It was proved in [17, 
18] that (1.2) is contractive for all functions a(.) satisfying (1.4) for some fixed 
p > 0 if and only if 

h<Sp . 

The constant S, which we also call a threshold factor, is given by 

S= inf{-aifl 110?< i<k- 1 and/Bi >0} 

(1.12) if al < 0 (0 < i < k - 1), f, > O(0? < i < k), 

S = 0 (otherwise). 

In fact (cf. [ 1 7, 18, 20]), method (1.2) is contractive for any norm 1*1 and any 
function f satisfying (1.4) if and only if the stepsize h is chosen in conformity 
with the latter stepsize restriction. 

Similarly to (1.10), we define for k > I , p > 1 the optimal threshold factor 

(1.13) Sk p = sup{SIS is the threshold factor (1.12) 
of a k-step method (1.2) of order p}, 

and we say that (1.2) is an optimal k-step method of order p for (1. 1), (1.1 1) 
if the threshold factor S of this method is equal to Sk p . 

In the numerical solution of (stiff) differential equations, stepsize restrictions 
that are imposed in view of contractivity or positivity requirements can be quite 
restrictive and embarrassing. 

In view of the above considerations, it is natural to study the size of optimal 
threshold factors Rk p and Sk ,,p and to construct optimal linear multistep 
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methods. Methods that are optimal with respect to S among a subset of k-step 
methods of order p were found in [17], but here we shall consider optimality 
with respect to all methods. 

Optimal methods for (1.1), (1.11) will be constructed in ?2. The size of 
Skp, ~for fixed p, when k tends to infinity, is considered in ?3. We will prove, 

for p = 2, 4, 6, that Sk, p is maximal for k = p2/4. On the other hand, for 
p = 3, 5, 7, it turns out that Sk p is a strictly increasing function of k with 
limk,o Sk,p = S(P_ 1)2/4,p-1 

The implicit Euler method is optimal for both test equations when p = 1 . In 
fact, for all k > l, we have Rk1 = Sk,1 = oo. This was shown in [ 1 5, 17, 19]. 
We will show in ?4 that the equality Rk,p = Sk p also holds for p = 2, 4, 6 

and k> p2/4. 
For p = 2 and any k > 1 we will prove that the trapezoidal rule (i.e., (1.2) 

with flk = flk-1 = 1/2, ak-l = -1, /i = ai = 0 (0 < i < k - 2)) has 
optimal threshold factors R and S. This reveals another optimal property of 
this method, which is already known to have optimal properties with respect to 
A-stability (cf. [3]). 

Further, for 1 < p < 7, Rk p can be only slightly larger than Sk p (cf. ?4). 
A numerical example is presented in ? 5, where one of our optimal methods 

is compared with a BDF-formula (cf. [12]). Finally, some technical lemmas 
are formulated in ?6. 

2. DETERMINATION OF OPTIMAL METHODS FOR (1.1), (1.11) 

2.1. An algorithm to find optimal methods. This and the following subsection 
are devoted to the construction of optimal methods (1.2) for (1. 1), (1.1 1). By 
"threshold factor" etc. we mean the term which refers to this test equation. 

We use the notations 

(1 i .2 iqT bi(X)= (1, i+ x, i2i,.., iq iqxi I)T, a1 (1,,12... , q)TI bO( 1 1 ?2ix qx 
.2 

, 
q T 2 q i q-1I T 

ci = (1, 1 , ..., i ) , d,(x) = (i+X, i +2ix, .. ., i + qix ) 

Here, i is an integer and x is a real number. The length of these vectors will 
not always be indicated explicitly. 

By co(X) we mean the convex hull (see [16]) of a subset X of a linear space. 
The relative interior (see [16]) of such a subset X will be denoted by ri(X). 
For r>0, k >l,and p> , wedefinein lRl 

Kp(r) =co{ci , d(r)I0 <1i< k- 1, 0 <j <k}. 

Further, #(Y) denotes the number of elements of a set Y. For several other 
notions, and Carath6odory's theorem, the reader is referred to [16]. 

Consider a method (1.2) with /3k > 0. From (1.3) it follows, for r > 0, that 
(1.2) is of order at least p if and only if the equality 

k-I k-i 

(2.1) E(-aj - r/3i)aj + E rflibi(rV) =bk(-fk) 
i=o i=o 
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holds in RR/+l . Equivalently, we have (in RP+l ) 
k-i k 

(2.2) Z(-ai - rfli)(l + flkr) 1a1 + S rfii(1 + flkr) 1b,(r l) = ak. 
1=o i=o 

We shall use this relation most often with ai, b1, and ak replaced by ci, d1, 
and Ck, respectively. 

Let k > l, p > I, and r, be given with O < r, < oo and ck E Kp(rl). 
From the definition of Kp (.) it can be seen that 
(2.3) KP(rI) c Kp(ro) (for all ro with 0 < ro < rl). 
Suppose method (1.2) has a threshold factor S with 0 < ro < S < xc. It 
follows from (1.12) and (2.2) that Ck E KP(S). Thus, by (2.3), with r1 = S, 
we have ckEKp(rO). 

Assume r is a real number with 0 < r < Skyp. We have for each e E (0, r) 
that Ck E Kp(r - E), by (1.13) and the preceding conclusion (with rO = r- -). 
It can be seen that this implies that Ck E KP (r) . 

Conversely, if Ck E Kp(r) for some r with 0 < r < 00, we can use (2.2) and 
(1.12) to construct a k-step method (1.2) of order at least p with threshold 
factor S > r. Hence, 
(2.4) Sk?P > r iff Ck E KP(r) (for all r with O < r < oo). 

Since the implicit Euler method is known to have S1 I = RI l = o? and Sk,p < 
00, Rk p < oo for methods of order p > 2, the restriction r < oo in (2.4) is 
not important. 

As a consequence of (1.12), (2.2), (2.4), and Theorem 2.3 in [17], we have 
the following existence theorem for optimal methods. 

Theorem 2.1. (i) Let k > 1, p > 1. If there exists a k-step method (1.2) of 
order at least p, then there exists a k-step method (1.2) of order at least p that 
is optimal for (1.1), (1.11). 

(ii) For all p > 1, there exists an integer k(p) such that Sk p > 0 for all 
k > k(p). 

We now give four lemmas which enable us to devise an algorithm to compute 
optimal methods. 

Lemma 2.2. Let k > 1, p > 2, and r be given with Sk p > 0 and 0 < r < 00. 

Then dim(Kp (r)) = p. 

Proof. Since Sk p > 0, there exists a stable (cf. [9]) k-step method of order p. 
Hence p < 2+k by Theorem 5.9 in [9]. Using [7, p. 122], and some elementary 
operations, it can be seen that the first p + 1 vectors of the sequence of vectors 
in Rlp+1 

bo(r '), ao, bl(r ),al, ..., bk(r ') 
are linearly independent. Hence the first p + 1 vectors of the sequence 

do(r 1), co, d1(r I), cl,... dk(r ') 

are affinely independent and dim(Kp(r)) = p . o 
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Lemma 2.3. Let k > 1, p > 2, and let S be a real number, O < S < oo. Then 
S = Sk p if and only if Ck is an element of the boundary 9KP(S) of KP(S). 

Proof. Assume S = SkP p. By (2.4), we have Ck e KP(S). If Ck were contained 
in the interior int(Kp(S)) of Kp(S), there would exist r > S with Ck E KP(r) . 
However, since S = Sk p, this cannot be the case, by (2.4). Hence Ck E 

OKP (S). 
To prove the converse, let Ck E 9Kp(S) . Then Sk p > S (cf. (2.4)). Assume 

Sk,p > S. Since p > 2, we know that Sk p < 00 (cf. ?1). A contradiction can 
be derived as follows. Let G be a face of Kp(S) with e .n(G) = p - , ck e G. 
This is possible by Lemma 2.2. There exists a method of the form (1.2) with 
threshold factor Sk p (cf. Theorem 2.1). For some I c {O, 1, ..., k - 1}, 
J c {O, 1,., k}, we have by (2.2) (with r = Sk l) that 

(2.5) Ck = ci + E jujdj(Sk,I ) 
tEl JEJ 

with ZicIAi+ZEjEJIj= I, Al >O (ieI) and yj >O (je J). Theset G 
is a face of Kp(S), Ck E G, and, by (2.3), KP(Sk P) c KP(S). Hence, 

{ci,dj(Sk, )liEI, jEJ}cG. 

Since dj(Sj ) e ri(co{cj, dj(S'1)}) and cj, dj(S'1) e KP(S), we also have 

ci E G and di(S 1) E G for all ] E J. The convexity of G then implies that 

(2.6) {ci,dj(rI)jieiIUJ, jEJ, rE[S,oo)}cG. 

Assume k z J. Then Spo = span{a,, bj(r I)ji c- Iu J \ {k}, i , J\ {k}} 
is independent of r provided r e (0, 00). Further, by (2.5), 

(1 Ok) (ak- Pkbk(Sk,p)) =bk(-uk(' JLk)Sk,p)ESPo 

Consequently, Sp = span{a,, bj(r 1 )Ii e I u J \ {k}, Ij E J} is independent of 
r, provided rz(0,oo). 

The last assertion also holds when k 0 J. 
There exist ro with O < ro < oo and Io c I u J \{k}, JO c J such that 

B(r) = {a1, bj(r 1 )Ii z Io, j E JO} 

is a basis of Sp when r = rO. From (2.6) we know that dim(Sp) < p, so that 
#(B(ro)) < p. Furthermore, there exists a neighborhood U of ro such that 
B(r) is a basis of Sp for all r e U. Since ak E Sp (cf. (2.5)), we see that 
there exist indices 

i(l) < i(2) < < i(m) and j(l) < j(2) < ...< j(n) 
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such that 

det(ai(,) , ai(2, -- ai(m) I bj(,r), 

bj(2)(r ), ... , bj(n)(r), ak) = 0 (for all r E U). 

Hence, the determinant must vanish for all r > 0. However, it follows from 
[7, p. 122] that this cannot hold. 

Therefore, the assumption Sk p > S cannot hold and we must have Sk p = 

S. O 

The condition stated in Lemma 2.3 is necessary and sufficient for a method 
(1.2) to be optimal. However, from a computational point of view, this lemma 
is only useful to show whether or not a given method is optimal. In Algorithm 
2.7 below, candidates for optimal methods will be obtained by Lemma 2.5. In 
the proof of this lemma we need 

Lemma 2.4. Let s > 1 X={x(l), x(2), ...,x(n)} c Rs, K = co(X), d be 
the dimension of K, and let v belong to the relative interior ri(K) of K. Then 

(i) A = {(A(l), A(2), ..., A(n)) [V = Zn A(i)X(l), n1 L A(i) = 1, A(i) > 0 
(1 < i < n)} is a convex set whose dimension equals n - d - 1. 

(ii) For each i (1 < i < n), there exists a set Y c X of affinely independent 
vectors such that x(i) E Y, #(Y) < d + 1, and v E ri(co(Y)). 

Proof. It is easy to see that A is convex. Further, there exist numbers A(i) > 0 
such that v = EZn A(i)x(i)). By using elementary linear algebra, it can then be 
seen that dim(A) = n - d - 1 . This proves part (i). 

To prove part (ii), let 1 < i < n. If v = x(i), the assertion holds for this 
value of i . Otherwise, let 4 > 0 be such that w = v + (v - x(i)) is contained 
in the relative boundary (cf. [16]) of K. Apply Caratheodory's theorem to w 
and a face F of K, F :$ K, with w E F, and use v = (I +J) 1 (w +4x(i)) . n 

In the following lemma, k > 1 and p > 2 are given with Sk p > 0. By 

Lemma 2.3 we have Ck E 9Kp(Sk p) . Hence we may denote by F the smallest 

face of KP(Sk p) such that Ck E ri(F). The dimension d of F satisfies 
d < p- I. By Lemma 2.2 (with r = Sk p < oo) there exists a (p- I)- 
dimensional face G of KP(Sk p) such that F C G. Further, we introduce 

I = {il0 < i < k - I and c e F} and J = {ij0 < j < k and dj(S7 t) E F}. 

Lemma 2.5. (i) The coefficients 

(-aO - Sk pfl)(l + fkSk p)Y 
, ** (-ak-1 - Sk,pflk-1)(1 + flkSk,p) s 

Sk,p/o(l + /JkSk,p) 
, 

'Sk,p/k(l + /kSk,p) 

in (2.2) of the class of optimal k-step methods (1.2) of order p form a convex 
set in R2k+1 of dimension #(I) + #(J) - d - 1. 



184 H. W. J. LENFERINK 

(ii) To each Io c I, JO c J with #(IO) + #(JO) = 1, there exist Il, J,, with 
Io c I1 c I, Jo C J, c J, such that Y ={ci, dj(Sk p)Ii E II, jE J} is a set 
of at most d + 1 affinely independent vectors and ck E ri(co(Y)). 

(iii) Let Il, J, be as in (ii). There exists a unique optimal method (1.2) such 
that for the coefficients in (2.2) 

( aei Sk,pfli)(1 + &Sk,p) =? (for all i 0II), 

Sk,p/J(l + fkSkp)I = 0 (for all j 0 J,). 

(iv) For each I,, J, as in (ii) there exist 

I2 ={i()I i(2), i(m)}c{O 1, I. ,k- 1}, 

J2 = {j(1), j(2), ,j(n)} c {0, 1, ...,k}, 

with Il cI2, Jlc J2 and such that X={ci,dj(SJ" )iieI2, je J2} isaset 
of p affinely independent vectors and G is contained in the affine hull aff(X) of 
x. 

(v) If #(G n {ci, dj(Sk p) 1 < i < k - I1, 0 < j < k}) = p, then the optimal 
k-step method (1.2) of order p is unique. 

(vi) Let I2, J2 be as in (iv). Then Sk p is a simple zero of the polynomial 

P(r) = rn det(a,(l , al(2), , 

bj(,) (r-I)I bj(2) (r- 1), ... , bj(n) (r 1) ak). 

Proof. Each optimal k-step method (1.2) of order p corresponds in a one- 
to-one fashion to an expression of ak as a convex combination (2.2) (with 
r = Sk p) of the vectors ai, bj (Sj I,). This is an immediate consequence of 
(1.12), (1.13). Since F is a face of KP(Sk p) with Ck E F, the coefficients in 
(2.2) corresponding to i 0 I, j 0 J are zero. We may now use Lemma 2.4 
with s = p, X = {ci, dj(S( ,)Ii E I, i E J}, K = F, and v = ck. Parts (i) 
and (ii) of Lemma 2.5 follow from parts (i) and (ii) of Lemma 2.4, respectively. 

Part (iii) follows from part (ii) of Lemma 2.5 and formula (2.2). 
Since F c G, part (ii) also implies part (iv). 
Assume the condition of part (v) is fulfilled. Since dim(G) = p - 1 and 

F c G, we necessarily have #(I) + #(J) = dim(F) + 1 = d + 1 . Thus, we can 
apply part (i) to prove part (v). 

As for part (vi), it follows from (iv) and the inclusion ck E G that P(Sk p) 
0. Some computation, using Lemma 2.2 (with r = Sk p), shows the fact that 
G is a face of KP(Sk p), and [7, p. 122], that 

(2.7) dP(Skp ) det (ai(l), *.. al(m) v bj(l) (Sk7p ),. ,by(n)(Sk P )' (b ))< 

for all v E KP(Sk p)\aff(X). Hence Sk p is a simple zero of P. o 
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Corollary 2.6. Let k > 1, p ? 2, Sk,p > 0, and let I, J, and d be as above. 
An optimal k-step method of order p is unique ifand only if #(I) +#(J) = d+ 1. 

In the following algorithm, we supply integers k > 1, p > 2. Using the 
algorithm, we can find all optimal k-step methods of order at least p for which 
there exist sets I2 and J2 as in part (iv) of Lemma 2.5. In particular, if the 
optimal threshold factor is positive, we obtain at least one optimal method. 
The sufficient condition in part (v) of the same lemma is convenient to show 
the uniqueness of an optimal method. 

Algorithm 2.7. 1. Give integers k > 1, p > 2. 
2. Find a (new) pair of integer sequences I = {i(l), i(2), ..., i(m)} c 

{0, , ..., k - 1}, J = {j(l), j(2), ..., j(n)} c {0, , ... k} with m + n= 
p. If such a pair does not exist, then stop. 

3. Compute positive roots, at least all those that are simple, of the polynomial 

P(r) = rn det(a,(1), a,(2 , a , 

bj (,)(r 1I), bj(2)(r 
1 ) I...,I bj (n) (r 1,ak). 

4. Verify whether for any of these roots, say r, 

(a) V = {ci, dj(r I)ji E I, j E J} is a set of p affinely independent 
vectors in IRp, 

(b) KP(r) lies on one side of the affine hull aff(V) of V, 

(c) CkeKP (r). 

If these conditions hold, r = Sk 'p. Determine coefficients ai (0 < i < k - 1) 
and /3j (O < j < k) of an optimal method (1.2) from equation (2.2) and 

(-ai - rfl)(l+ flkr) 1 = 0 (for all i 0 I), 
-1 

r/j (l?+ /kr) = 0 (for all j 0 J). 

If, in addition, cl 0 aff(V) (for i 0 I), dj(r 1) 0 aff(V) (for j 0 J), a 
unique optimal method has been found. Stop. 

Otherwise, return to step 2. 

2.2. A survey of optimal threshold factors and optimal methods. We can apply 
our algorithm with k > I, p > 2 to find Sk P and correspondirng optimal 
methods. For order p = 1, optimal methods can be found "by hand", using 
(1.12) and (2.1). Table 1 lists the positive threshold factors Sk p obtained in 
this way for k < 20, p < 8. We will also give some of the corresponding 
optimal methods. 

(i) k > 1, p = 1. Sk p = oc and (1.2) is an optimal method for (1.1), (1.11) 
whenever 

k-I k-I 

a < 0, fl, =0(0 < i < k - 1); E ai = -1, k= Zia + k. 
,=o .=o 
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In case k = 1, we have the so-called implicit Euler method. 
(ii) k > 1, p = 2. Sk P = 2 and (1.2) is a unique optimal method with 

ak-i = l, fk-I = -k = 1/2, ei = 1i = 0 (0 < i < k-2). 

If k = 1, this is the so-called trapezoidal rule. 
(iii) k > 2, p = 3. Sk P = (2k - 3)(k- 1)-l and (1.2) is a unique optimal 

method with nonzero coefficients 

ao = - (2k + I)- I(k - j)-2 

ak- i = -k 2(2k - 3)(k - 1) (2k + 1) I, 

gk-I =k 2(2k + 1) l(k - )_ 1, 

1k =k(2k+ 1) 1. 

(iv) k = 5, p = 6. This is a rather exceptional situation in that there exists a 

1-parameter set of optimal methods, with S5,6 = 1/2. From the results of the 

application of Algorithm 2.7 one can deduce that (1.2) is optimal if and only if 

A E [0, 1] and 

_459 -513 210 135 
ao _3709 +(I ) 5888 0 A =3709 + (1 -')2944 

,-125 A ,250 a1 3709' 3709' 

3709 ?(1) 5368 i , 7j9O + 7367 

3= 0, f3 0, 

t4 = 
-2125 

+ (I -A) 
-3375 

' 4 = 33750 + -A) 
3375 

3709 '88 370 9 (1)L2944' 

15 = A 150 (I -A) 5 
+ (1/ 9~ )46' 

(v) For all other values of k and p in Table 1, we found a unique corre- 

sponding optimal method. The coefficients of some of them are listed in Tables 
2, 3, 4. 

Although, for reasons of convention, we gave the coefficients ai and gj in 

the above enumeration, the preceding theory suggests we use, instead of the 

classical form (1.2), the equivalent form 

k-I 

(2.8a) un - hlkf(tn , un) = Yi un-k+i 
i=O 

k-i 

+ E (un-k+j + hSkj pf (tn-k+j Un-k+j)) 
j=O 

(n = k, k + 1,.. .). Here we assume that Sk p < o and 

(2.8b) Yi = -ai - Skpfli (0 < i < k - 1) 

(2.8c) c5j = Sk,p,Bj (0 < j < k - 1). 
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TABLE 1 

Optimal thresholdfactors Sk p for k-step methods (1.2) of order p 

p 1 2 3 4 5 6 7 8 
k 

1 00 2 
2 co 2 1.0000 
3 co 2 1.5000 1.0000 
4 co 2 1.6667 1.2432 0.6667 
5 oo 2 1.7500 1.2432 0.7955 0.5000 
6 oo 2 1.8000 1.2432 0.9294 0.6597 0.3000 
7 oo 2 1.8333 1.2432 1.0056 0.7837 0.4676 0.1965 
8 oo 2 1.8571 1.2432 1.0524 0.8683 0.5500 0.3450 
9 cc 2 1.8750 1.2432 1.0837 0.9053 0.6420 0.4426 

10 oo 2 1.8889 1.2432 1.1061 0.9053 0.6901 0.5328 
11 oo 2 1.9000 1.2432 1.1229 0.9053 0.7329 0.5803 
12 cc 2 1.9091 1.2432 1.1361 0.9053 0.7644 0.6249 
13 cc 2 1.9167 1.2432 1.1466 0.9053 0.7810 0.6620 
14 cc 2 1.9231 1.2432 1.1552 0.9053 0.7946 0.6920 
15 cc 2 1.9286 1.2432 1.1624 0.9053 0.8057 0.7138 
16 cc 2 1.9333 1.2432 1.1685 0.9053 0.8149 0.7189 
17 cc 2 1.9375 1.2432 1.1737 0.9053 0.8226 0.7189 
18 cc 2 1.9412 1.2432 1.1783 0.9053 0.8291 0.7189 
19 cc 2 1.9444 1.2432 1.1822 0.9053 0.8346 0.7189 
20 cc 2 1.9474 1.2432 1.1858 0.9053 0.8394 0.7189 

TABLE 2 

The nonzero coefficients of optimal k-step methods of order 4 

k = 3 ao = -5/32 30 = 3/32 

a2 = -27/32 fl2 = 27/32 
fl3 = 3/8 

k = 4 ao = -0.044656443869 ,o = 0.035920310223 
a 1 = -0.032287478509 Il1 = 0.025971083765 

a3 = -0.923056077622 fl3 = 0.742478750864 
l4 = 0.394174143773 

These coefficients can easily be obtained from the tables with 

Sk, 
= 

ak-1I/fk-1 I 

as it has turned out that Yk 1 = 0 for optimal methods of order p with 2 < 

p < 8. 
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TABLE 3 
The nonzero coefficients of optimal k-step methods of order 5 

k =4 ao = -3/35 41 = 12/35 
a1 = -8/35 93 = 36/35 
a3 =-24/35 34 = 12/35 

k = 5 ao = -0.024644773737 /3 = 0.061720193877 
a1 = -0.049099680927 f2 = 0.209152015371 
a2 = -0.166384720704 /4 = 0.955186952991 
a4 = -0.759870824632 /5 = 0.352588416898 

k = 6 ao = -0.005965846424 32 = 0.066948740947 
a2 = -0.062219568345 33 = 0.116094333637 
a3 = -0.107893579835 /5 = 0.886545429648 
a5 = -0.823921005396 36 = 0.362686592593 

k = 7 ao = -0.001899283695 /3 = 0.063077153883 
a3 = -0.063432086540 34 = 0.079319283337 
a4 = -0.079765609816 36 =0.850119431442 
a6 = -0.854903019949 37 =0.368707312757 

k = 8 ao = -0.000746897457 34 = 0.059089849737 
a4 = -0.062185187770 395= 0.061944057008 
a5 = -0.065188908644 37 = 0.828480242782 
a7 = -0.871879006129 /8 = 0.372647513271 

k = 9 ao = -0.000340789183 35 = 0.055882324853 

a5 = -0.060559712643 /6 = 0.052367222428 
a6 = -0.056750393804 /8 = 0.814200020652 

-8 = -0.882349104370 /39 = 0.375456671066 

k = 10 ao = -0.000173264587 36 = 0.053370030451 
a6 = -0.059033126258 37 = 0.046483965160 

a7 = -0.051416380337 /3 = 0.804058548035 
a9 = -0.889377228819 310 = 0.377578977080 

k=11 ao = -0.000095614309 37 0.051383050339 
a7 = -0.057700216566 /8= 0.042577350348 
a8 =-0.047811920852 /31l=0.796471913807 
ao= -0.894392248273 fll = 0.379248320000 

k = 12 a0= -0.000056258666 f8= 0.049784569697 

a8 -0.056558096984 39= 0.039828864761 
a9 -0.045247851084 ll I = 0.790574753235 

al= -0.898137793267 312 = 0.380600650748 
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TABLE 4 
The nonzero coefficients of optimal k-step methods of order 6 

k = S one parameter set 
as described above 

k = 6 ao = -0.039244965860 fl0 = 0.024348556303 
a2 = -0.076331008461 182 = 0.115708903958 

a3 = -0.196586017197 /33 = 0.298001468104 
a5 = -0.687838008482 fl5 = 1.042682176830 

/6 = 0.337648783882 

k = 7 ao = -0.013219720715 g30 = 0.010637484589 

a3 = -0.084824895181 /33 = 0.108232169095 

a4 = -0.141412093193 /34 = 0.180434500388 
a6 = -0.760543290911 &36 = 0.970413814127 

37 = 0.346899228021 

k = 8 a = -0.005219538160 /30 = 0.005143493020 

a4 = -0.083655994035 fl4 - 0.096341243207 

a5 = -0.108421088766 /35 = 0.124861614544 

a7 = -0.802703379039 /37 = 0.924422001734 
38 = 0.353578574250 

k = 9 ao = -0.001642953120 /3o = 0.001814860688 
aI = -0.001731087076 /3, = 0.001912216389 

a5 = -0.081210958324 /35 = 0.089708326990 

a6 - -0.096236043942 /36 = 0.106305536547 

a8 = -0.819178957538 /38 = 0.904892335991 

/39 = 0.356732920744 

For each k > 1 and p > 2 with Sk,p > 0, there exists an optimal k-step 
method of order p with at most p of the coefficients 3k I yi, j (0 < i, j < 
k - 1) not equal to zero (cf. part (iii) of Lemma 2.5). For k = 4, p = 5, the 

optimal method even has only four nonzero coefficients. 
We found a remarkable method for k = 1, p = 2 and for k = 4, p = 4 and 

for k = 9, p = 6. In these cases, all the yi (0 < i < k - 1) vanish. By storing 

the fixed linear combinations ui+hS17 f (ti, ui) (instead of the usual vectors ui 
and f(ti, ud)), and using these in (2.8a), we obtain an efficient implementation 
of these methods. Other interesting features of these methods will be exhibited 
in ??3 and 4. 
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We conjecture that also for k = 16, p = 8, the coefficients y, of the cor- 
responding optimal method vanish. However we have no complete proof of 
this. 

3. ASYMPTOTIC BEHAVIOR OF Sk p WHEN k TENDS TO INFINITY 

To a given k-step method (1.2) we adjoin, for I > k, the 1-step method 

1-1 

(3.1) u h -h/3lf (tn, u ) = Z(-aIun_+ + hflff(t_ , un-+1)) (n > 1). 
i=O 

Here, fl=1 -(-k) (l - k ?il1), (I - k < < Il ),and 
/= a1=0 (0<i</-k). 

Inspired by the manifest regularities in Table 1, we will derive two theorems 
concerning the form of optimal methods for fixed order p when k tends to 
infinity. 

Theorem 3.1. Let k > 1, / > k, p > 2, p even, Sk P > 0. Let (1.2) be an 
optimal k-step method of order at least p such that 

(3.2) -a6i - Sk 'pi = 0 (O < i < k - 1) and #{ilt3l f 0} = p. 

Then: 
(i) There exist indices il < i2 < ... < p/2 such that 

{jV/1 $0?} = {il + il - 1, i2,2? 1,. * Jp/2, Jp/2+ 1} 

(ii) S/P = Sk p, and the 1-step method adjoined to (1.2) is an optimal 1-step 
method of order at least p. 

(iii) An optimal 1-step method of order at least p is unique if and only if (1.2) 
is a unique optimal k-step method of order at least p. 

Proof. Let j(1) < j(2) < < j(p) be such that I3j(m) $ 0 (1 < m < p). 
Since Sk,p < o0 for p > 2, we can define 

(3.3) fi(v) = det (b()+n(Sk,) ..., (p)+n(SkP (v)) 
(for all v e Rp and n e). 

By (2.2), (3.2), and the fact that flj(mn) > 0 for 1 < m < p (cf. (1.12)), the 

vector Ck is contained in ri(co{dJ(,n)(S,71p)l1 < m < p}). Using Lemmas 2.3 
(with S = Sk p), 6.2, and 6.1, it can be seen that KP(Sk p) lies on one side of 

aff{dj(1)(S" lp), ..., dj(p) (Sk lp)}. It follows from Lemma 6.4 (with i = y = 0, 
x = Sk, p) that fo(v) > 0 for v = co. Therefore, we must have 

(3.4) fo(v) > 0 (for all v E Kp(Sk p)). 
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In particular, we may choose v = d (S, lp), 0 < j < k. Part (i) follows by 
interchanging columns in (3.3) and using Lemmas 6.1 and 6.2. 

To prove part (ii), we appeal to Lemma 2.3 with k = I and S = Sk p. We 
will show that cl E &KP(Sk p). 

Let v = cl for some i with 0 < i < / - 1 . Then fl_k(V) = fo(cI-k)) by 
Lemma 6.3. This last value is nonnegative by Lemma 6.4 and (3.4). Similarly, 
f/k(v) > 0 for v = dj(Sk- P) (O < j < 1), by Lemmas 6.1 and 6.2 and by part 
(i). Consequently, J>k(V) > 0 for all v E Kp(Sk P). Further, cl E Kp(Sk P) 
and f/-k(Cd) = fo(Ck) = 0, by (2.2) and Lemma 6.3 (part (i)). 

Therefore, cl E &KP(Sk p). An application of Lemma 2.3 shows that Sk,p P 
S ,,p. Part (ii) now follows immediately. 

Finally, part (iii) can be seen to follow from Corollary 2.6, using (3.3) and 
Lemmas 6.1, 6.2, 6.3, 6.4. o 

Corollary 3.2. Let p = 2, 4, or 6, and k > p2/4. There exists a unique optimal 
k-step method of order p. It is equal to the k-step method adjoined to the optimal 
p2/4-step method of order p. 
Proof. The unique optimal methods of order 2, 4, 6 and stepnumber 1, 4, 9, 
respectively, obtained in ?2.2, satisfy condition (3.2) of Theorem 3.1. o 

Theorem 3.3. Let k > 1, p > 2, p even, Sk,p > 0. Let (1.2) be a unique 
optimal k-step method of order p. Let (3.2) be satisfied and 

(3.5) det((O, ..., 0, 1, O) ,) bj(1)(Sk p) bj b1(P)(Sk p), ak) < O 

with j(1), ... , j(p) as in the proof of Theorem 3.1. Then: 
(i) For I large enough, there exists a unique optimal 1-step method (1.2) of 

order at least p + 1 . 
(ii) S1 p+1 - Sk,p=(F1) (for I - oo). 
If $(O < i < I - /)I (O < i < I) denote the coefficients as in (3.1 )of the 

method in (i), then: 
(iii) For I large enough, 

(3.6a) -a - 0plB (for I < i < I - 1), -5 >0O, 

(3.6b) /<;n)?/k > 0 (for 1 < m < p), fl' = 0 (i otherwise). 

(iv) -af = &(/-(P+,)) (for I oo), 
I 

- = m)& (1) (for 
1< m <p). 

Proof. The proof will be given in four steps. 
1. Definefor s> 1, x>O ,and ve11RP+f 

g(s, x, v) = det (a_ ( bJ(2) (x), ... , bj(p (x), 
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From the implicit function theorem, (2.7), Lemma 6.4 (with i = y = 0, x = 

Sk l), and (3.5), it follows that, for s large enough, there exists a unique 

xs > Sk lp with g(s, xs, Ck) = 0 in some neighborhood of Sr lp. It can be 
verified that xs -Skl = &(s-) (for s -- oo) . 

2. Let s be large enough. From Lemma 6.4 (with i = s, y = 0, x = xs) and 
Theorem 3.1 (part (i)), we see that g(s, xs5, di(xs)) > 0 for j not equal to any 
j(m) and -s < j < k. Likewise, g(s, xs, c_j) > 0 for 1 < i < s, by Lemma 
6.5 (withj =s, x =x5). Finally, g(s, xs, cI) >0 for 0<i< k<k- I, since s 
is large enough and using Lemma 6.4 (with i = y = 0, x = xs), Lemma 2.3 
(with S = Sk p), the fact that (1.2) is a unique optimal method, and Corollary 
2.6. 

Applying, then, Lemma 6.3 s times, we see that KP+ 1(xs) lies on one side 
of aff{co, dj(l)+s(xs), dJ(2)+s(xs) , dj(p)+5(x5)1 } 

3. The vectors a_5, bJ (l)(xs), ... , bj(p)(xs) in I+2 are linearly independent 
(use Lemma 6.4 with i = s, x = xs, y = 0). Since g(s, x5, ck) = 0, there 
exist unique coefficients ys and 5s (1 < m < p) such that (in IRp+2) 

p 
(3.7) a = ysas + E 5sb(m)(Xs) 

m=1 

Standard perturbation analysis, (2.2), (3.2), and the result of step 1 show that 
y = (s-(P+?)) and 

L5nSkp/3I(m)(l+/kSkp) = (s1) (for s -+oo, I < m < p). 

Further, 5m (1 < m < p) are positive when s is large enough. By the substi- 
tution (3.7) it is evident that ys > 0 if and only if 

(3.8) det(a_s, bJ(l)(xs), * ., bj(p)(xs)) - det(ak , bJ(l)(xs) , * * *, bj(P(Xs)) > 0 

We may use (2.7) with m =0, n = p, v = co. Since xs > S7- (for s - oo), 
we obtain from (2.7) and Lemma 6.4 that (3.8) holds (for s -) oo). Therefore, 
ys > 0 for s large enough. 

4. Let / be large enough. We choose s = I - k, and determine coefficients 
a$, 13j such that 

I-Ix I/O( + <X_jY (-CeO - 
XI-klk O)(1 I + 1- /_k Yl-k' 

-a'-X1kI'=0 (1 < < - 1), 
(3.9) -1' -l 

X1 kf3j(m)+?k(l + XI- = 5 (1 m p), 

,/< = 0 (if there is no m with j = j(m) + I - k). 

Let (3.1) be the i-step method with these coefficients. This i-step method is of 
order at least p + 1 , by (3.7), Lemma 6.3 (part (i), applied I - k times), and 
(2.2) (in Rp+2 and with k = /, r = X,_ . 
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From Lemma 2.3 (with k = I, p replaced by p + 1, and S = x711), (3.7), 
Lemma 6.3, and the result of step 2, it follows that this is an optimal method 
and that Si, p+ = x[1k . Part (ii) of Theorem 3.3 thus follows from step 1. 

The uniqueness of this optimal method can be shown by applying Lemma 
2.5 (part (v)) and using step 2 and Lemma 6.3. This gives (i). 

Finally, parts (iii) and (iv) follow from step 3 and (3.9). o 

The optimal methods of stepnumber 1, 4, 9 and order 2, 4, 6, respectively, 
satisfy the conditions of Theorem 3.3. Hence, a description of the structure of 
optimal i-step methods of order 3, 5, 7 is provided by this theorem for l large 
enough. We found that the coefficients of the optimal i-step method satisfy 
(3.6) for 1 > 2, 5, 13, respectively. 

4. OPTIMAL METHODS FOR TEST EQUATION (1.1), (1,7) 

4.1. Order relations. In order to derive optimal methods for test equation 
(1.1), (1.7), we will first give convenient order relations, similar to (2.1), for 
test equation (1. 1), (1.1 1). 

Let (1.2) be a method with fk > 0, and let r > 0. Then (1.2) is of order at 

least p if and only if (in RlP+l) 

k-i 

(4.1a) Z(yibi(-flk) + 3ibi(rJ)) = bk(-I3k), 
i=O 

where 

(4. 1b) yi = (-ai - rfl,)(I + r,Bk)l (0 < i < k - 1), 

(4. 1c) jSi = r(fl, - aiflk)(l + rflk)_ (0 < i < k - 1) . 

The threshold factor R given by (1.9) is at least r if and only if 

(4.2) 2'i > 0, Oi > O (0 < i < k- 1). 

4.2. A sufficient condition for optimality. In this subsection we give a lemma 
which is helpful in verifying whether a given k-step method (1.2) of order p is 
optimal for (1.1), (1.7). To this end, we define the subset of Rl/p 

Kp(r, y) = co{vlv = d1(-y) or v =d(r ) 

for some i with 0 < i < k - 1}. 

Clearly, Kp(r1,y)cKp(ro, y) forall y >0 and ro, r, with 0<ro<r1 <oo. 

Lemma 4.1. Let k > 1, p > 2, and assume yo > 0 and r > 0 are given such 
that: 

(4.3a) There exist index sets I, J c {O, 1 ... , k - 1}, J not con- 
tained in I, I= {i(f1), i(2), ... , i(m)}, J = {j(1), j(2), ..., 

d(n)-, m + n rop - 1, with (in RP) 

dk (-yo) E ri(co({di (-yo) Ii E I} u { dj (r-' )j E J})) 
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(4.3b) S1 = {d(-yj)i E I}u{dj(r- 1)II E Ju{k}} is a set of p affinely 
independent vectors in Ri. 

(4.3c) S2(y) = {di(-y)li E I u {k}} u {dj(r-K)1j E J} is a set of p 
affinely independent vectors in RP for all y > 0 with y =$ yo. 

(4.3d) The set {di(-yo)10 < i < k- 1, i 0 I}u{dj(r- I)IO < j < k- 1, 
i 0 J} does not intersect with, and lies on one side of, aff(S1). 

(4.3e) For each y with y > 0, y $ yo, the following property holds: 
the set {di(-y)1O ? i < k-i, i 0 I}u{dj(r-I)IO ?1 
k - 1, j 0 J} does not intersect with, and lies on one side of, 
aff(S2(y)) . 

Then there exists a unique k-step method of order at least p which is optimal 
for ( 1.1), ( 1.7). Its threshold factor equals Rk p = r . The coefficients a , fBi can 
be found by putting 

Yi = O, 6j = O (O < i, i -, k -1; i 0 I, i 0 J), flk =YO 

in (4.1) and solving for the remaining coefficients. 
Proof. From (4.3a), (4.1), (4.2), it can be seen that there exists a k-step method 
(1.2) of order at least p with threshold factor R given by (1.9) with R > r. 
Assume (1.2) is such a method. By virtue of (4.1), (4.2), we have dk(-/Jk) E 

KP(r, 13k). However, conditions (4.3c, e) imply that dk(-y) 0 KP(r, y) for 
y E (0, yO) or y E (yo, o) . Therefore, fk = Yo . 

Next we show that r = Rk p , It can be verified that (4.3a, b, d) imply that 

dk(-fik) 0 K (r1, yo) for r < r1 < o. Hence r = Rk p . 
Finally, we obtain from (4.3a, b, d) that {ilyi $ 0} c I, {fiIlj $ 0} c J for 

the coefficients in (4.1). Conditions (4.3a, b) guarantee that there exist unique 
coefficients ai, /%i satisfying the order relations (4.1 ) with yi = 0 (i 0 I), 5i = 
0 (j 0 J). Thus, we have obtained the unique k-step method (1.2) of order 
at least p which is optimal for (1.1), (1.7). o 

4.3. Comparison of Rk p and Sk p . As an immediate consequence of defi- 
nitions (1.9), (1.10), (1.12), and (1.13), we have 

Theorem 4.2. Let k > 1, p > 1. Then: 
(i) For any method (1.2) with thresholdfactors R and S given by (1.9) and 

(1.12), one has R > S. If the method is explicit, then R = S. 
(ii) Rk,P ' Sk,p. 

At first sight, it might be expected that Rk p > Sk p for given k > 1, p > 2. 
Theorem 4.3 below, however, rather shows the opposite. 

Theorem 4.3. Let p = 2, 4, or 6, k > p 2/4. We have: 
(i) Rk,p =RP214,p =SP2/4,p. 



CONTRACTIVITY-PRESERVING IMPLICIT LINEAR MULTISTEP METHODS 195 

(ii) There exists a unique optimal k-step method (1.2) of order p for (1. 1), 
(1.7). It is the k-step method (3.1) adjoined to the optimal p2/4-step method of 
order p for (1. 1), (1.11 ). 

Proof. Let p e {2, 4, 6}, k > p2/4, and let (1.2) be the optimal k-step 
method of order p obtained in ?3. Let j(1) < j(2) < < j(p - 1) < k be 
such that Bji(i) 5' 0 (1 < i < p - 1). We will verify condition (4.3) of Lemma 
4.1 with I = {ialce + Sk,pfi :O ?} = 0, J -{JI=fJ?O?} = {1(i)l1 < i< P-1}, 
and r=Skp, Yoflk- 

Recall that dk(-I3k) E ri(co{dj(i)(Sk p)I1 < i < p - 1}) (cf. (1.12), (2.1)). 
Hence (4.3a) holds. 

Condition (4.3b) follows from Lemmas 6.1, 6.2. Further, the determinant 
of the p x p matrix made up of the vectors bj(i) (Sk7l ) and bk(-y) is a linear 
function of y and vanishes only at y = f,k . So also (4.3c) is satisfied. 

In order to prove (4.3d), we consider the function 

f (y, z) = det(b,(-y) , bj(l)(Sk p ), ... , bj(pS_l), bk(-)) 

We have, by Theorem 3.1, part (i), and Lemmas 6.2 and 6.1, 

(4.4a) fS(-S,,, -Skj,) >O (for 0<s< k-, s0 J), 

(4.4b) fs(-SkP pI -Sk P) = O (for s E J). 

We also see that 0fs(0,-Sk) > 0. For s = 0, 1,...,k-p2/4, this 

follows from Lemmas 6.3 and 6.4, whereas for s = k - p2/4 + 1,..., k - 1, 
this can be shown by Lemma 6.3 and brute force computation. 

The function f is linear in y. Therefore, we also have 

(4.4c) fI(fk -S7, ) > 0 (O < s < k - 1). 

The inequalities in (4.4a, c) imply (4.3d). 
Finally, we prove (4.3e). Since the function f is linear in z, it follows from 

(4.3a), (4.4a, b), and the positivity of f0f -Sj71 ) that 

(4. 5a) sign(fs(y, y)) = sign(fs(y I -Skp)(flk - Y)) = sign(fl - ) 
(forally > 0, y & flk,I and0<s < k- 1). 

Similarly, the linearity of f in z, (4.3a), Theorem 3.1, part (i), and Lemmas 
6.2 and 6.1 imply 

sign(f (-Sk pI, y)) = sign(f,(-Sk, - Sk, )(flk -Y))= sign(flk -Y) 

(for all y > 0, y $,k and 0 < s < k - 1, s 0 J). 

Condition (4.3e) is satisfied because of (4.5). 
Hence, condition (4.3) of Lemma 4.1 is satisfied, and (1.2) is the unique 

k-step method of order p which is optimal for test equation (1.1), (1.7). o 
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TABLE 5 
Optimal threshold factors Rk 3 for 2 < k < 20 

k Rk,3 k Rk,3 
2 1.225 11 1.904 
3 1.572 12 1.913 
4 1.703 13 1.920 
5 1.772 14 1.926 
6 1.815 15 1.931 
7 1.844 16 1.935 
8 1.865 17 1.939 
9 1.881 18 1.943 

10 1.894 19 1.946 
20 1.949 

Remark. The unique k-step method (1.2) of order 2 which is optimal for test 
equation (1.1), (1.7) is the trapezoidal rule. This was already proved in [5] by 
using the "Greek-Roman" transformation (cf. [9, p. 230]). 

In general, the optimal threshold factors Rk p and Sk p need not be equal. 
Compare, e.g., Table 1 and Table 5. The optimal methods (1.2) for (1.1), (1.7) 
of order 3 were found by setting yi = 0 (1 < i < k - 1), 5i = 0 (0 < i < k - 2) 
in (4.1), solving for the remaining coefficients, and applying Lemma 4.1. 

On the other hand, for p =3,5,7 and k > 1, Rk p cannot be substantially 
larger than Sk p, as follows from Corollary 4.4. 

Corollary 4.4. Let p = 2,4, or 6. We have Rk,p+l = 
Sp214,p 

+ (k 1) (for 
k -oo). 
Proof. From Theorem 4.2, the definition of the threshold factor R, and Theo- 
rem 4.3, one obtains the inequality 

Sk,p+l < Rk,Pl < Rkp= Sp24p (for k > p 2/4). 

The corollary follows from this inequality and Theorem 3.3, part (ii). o 

5. A NUMERICAL EXAMPLE 

For the amplification of errors in the numerical solution u, (n = 0, 1, . . .) 
in the application of (1.2) to (1.1) it can make an essential difference whether 
the stepsize restriction (1.8) is satisfied or not. We wish to illustrate this by a 
simple numerical example. 

Consider the system of ordinary differential equations 

(5.1a) d-U(t) = AU(t) + b(t) (t > 0), 
dt 

(5. lb) U(0) = u0. 

Here, A = (aW j) is an s x s matrix with nonzero coefficients aii= -1 

(1 < i <S), , = 1 (2 < i s), and u0o ER. 
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TABLE 6 
Amplification factors Yn 

n 1 8 32 128 512 

method (i) 1.0 x 10o 2.0 x 10' 6.7 x 101 4.8 x I04 1.4 x 109 
method (ii) 1.0 x 100 1.0 x 100 9.6 x 10- 1 2.7 x 10 17 0 

We might use method (1.2) with exact starting values u0, ul, ..., UkI to 

obtain approximations un (n = 0, 1, ...), or with slightly perturbed starting 

values v0, vI, ... , vkI to obtain approximations vn (n = 0, 1, ...). The 

difference wn = vn - un (n =0 , 1, ...) will satisfy (1.2) with f(t, x) = Ax 

and initial values w0 , wI, .., Wk l- What is of interest to us is the maximum 

norm of wn . Therefore, we consider (5.la) with b(t) 0_ . Further, for n > 1, 

let the amplification factor Yn be the smallest real number such that 

IWfn+k-l K0 < Yn max{IIwWI0 w11 ...k, HW 111} 

for all w0, wI i... satisfying (1.2). 

Two methods (1.2) for solving (5.1) with s = 40 are compared, viz. 

(i) The backward difference method of order 6 (cf. [12]) with stepsize h = 

0.9052. The coefficients in (1.2) for this 6-step method are 

ao0= 10/147, a I = -72/147, a2 =225/147, a3= -400/147, 

4 = 450/147, a5 = -360/147, /3i = 0 (0 < i < 5), 6 = 60/147. 

The region of stability S of this method (cf., e.g., [10]) is the set of complex 

numbers defined by 

S = {AI the roots Ci of EZ>0 oaz' + (1 - A)j6)Z6 = 0 

satisfy <j ? 1, and if Ci = 1, then Ci is a simple root}. 

The eigenvalues of hA are contained in int(S). Hence maxn>1 Yn is finite. On 
the other hand, the threshold factor R in (1.9) equals R = 0. 

(ii) The optimal 9-step method of order 6 (cf. Table 1, Corollary 3.2, The- 

orem 4.3). The matrix A satisfies (1.4) with p = 1 . So (1.8) is fulfilled with 

stepsize h = 0.9052. Thus (1.6) holds, and Yn < 1 for all n > 1. 
In Table 6, Yn is given for various values of n for both methods. Clearly, 

from a practical point of view, it is desirable that the Yn be of moderate size. 

However, this is not the case for method (i). The table thus reveals the superi- 

ority, in the present example, of our optimal method (ii) over the well-known 

backward difference method (i). 

6. TECHNICAL LEMMAS 

Here we give lemmas which were repeatedly made use of in the proofs in the 

previous sections. 

Lemma 6.1. Let real coefficients 0 < al < a2 < < as and aI < a2 < < as 
be given. Then the determinant of the matrix M = (it j), defined by pi j = a" 

1 ?i,j < s, is positive. 
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For the proof we refer to [6, p. 1 18], where the transposed matrix MT is 

considered. 

Lemma 6.2. Let s > 1, x E R, and let the s xs matrix S = (a, j) be given by 

i, i = I (1 < i < s), vi i-l = (i- 1)x (2 < i < s), vi j = O (otherwise). Then: 
(i) Sai = bi(x) for all i E Z. 
(ii) det(Sv1, SV2, ..., Svs) = det(vl, v2, ...,v) (for all vl, v2, .... 

Vs E Rs). 

Proof. S is a triangular matrix with unit diagonal elements. Hence det(S) = 

1. El 

Lemma 6.3. Let s > 1, and let the s x s matrix T =(Ti j) be given by ri, J= 

(is ) (j < i), zij = 0 (otherwise). Then: 
(i) Tal -ai+1 and Tbi(x) = bi1I(x) for all ieZ, x 1R. 
(ii) det(Tvl, Tv2, **, Tvs) = det(vl, v2, ...,vs) (for all v1, 2, .. .,v E 

Rs) 

Proof. T is a triangular matrix with unit diagonal elements. Hence det(T) = 

1. El 

Lemma 6.4. Let i > 0 and x, y be real numbers with x > 0. Let 0 < j(1) < 

j(2) <... < j(s) be a sequence of integers. Define 

f (y) = det (b_ ,(-y), bj(l) (x), bJ(2)(x), ... , bj(s)(x)) 

Then f(y) > 0 and d f > 0 for all y > O. 

This lemma can be proved by using Lemma 6.2, expanding the determinant 
along the first column, and by applying Lemma 6.1. 

Lemma 6.5. Let i, j, s be positive integers with i < j. Let 0 < j(l) < j(2) < 

* < j(s) be a sequence of integers, and let x c (O, o) . Then 

det(a_ , a_1, bj(1)(x), bj(2)(x), ... , bj(s)(x)) > 0. 

This lemma is closely related to Lemma 3.3 in [13]. 
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